JOM 23224PC

Preliminary Communication

The controlled assembly of high nuclearity osmium clusters from smaller fragments

Jack Lewis and John R. Moss
University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW (UK)

(Received July 1, 1992)

Abstract

The step-wise assembly of larger osmium clusters can be accomplished by addition of $\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{McCN})_{2}$ to the dihydrides $\mathrm{H}_{2}\left[\mathrm{Os}(\mathrm{CO})_{4}\right]_{n}(n=1$ to 3$)$.

The controlled synthesis of large clusters of a particular nuclearity is a conspicuous challenge. Many existing synthetic routes give mixtures of clusters with a wide range of nuclearities that can be difficult to separate and the yields of which are often variable [1]. The reaction of the triangular acetonitrile substituted cluster $\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}$ with mononuclear metal hydrides has been previously shown to yield "spiked" clusters where $\mathrm{M}-\mathrm{H}=\mathrm{HRe}(\mathrm{CO})_{5}$ [2] or $\mathrm{H}_{2} \mathrm{Os}(\mathrm{CO})_{4}$ [3] in good yields. The "spiked" tetranuclear cluster, where $\mathrm{M}=\mathrm{HOs}(\mathrm{CO})_{4}$ did not react with an excess of $\mathrm{H}_{2} \mathrm{Os}(\mathrm{CO})_{4}$ to give a pentanuclear complex [3].

We now show that the hydrides of the homologous series $\mathrm{H}_{2}\left[\mathrm{Os}(\mathrm{CO})_{4}\right]_{n}(n=1,2$ or 3) [4] will add one or two molecules of $\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}$ in a stepwise fashion. Thus, the reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}$ with $\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{12}$ (in a $1: 1$ molar ratio) in dichloromethane at room temperature for 30 min yields the $3+3$ addition product 1 as the major product in good yield.

[^0]
(2)

An analogous addition of $\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{MeCN})$ to $\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{12}$ occurs in a slower reaction. Compound 1^{*} was isolated as an orange solid after working up the reaction mixture by thin layer chromatography. The chemical shift of the terminal $\mathrm{Os}-\mathrm{H}$ in the ${ }^{1} \mathrm{H}$ NMR and the observation that 1 readily reacts with CCl_{4} to give $\mathrm{HClOs}_{6}(\mathrm{CO})_{22}(\mathrm{MeCN})$ ** suggest that the reactivity of the terminal $\mathrm{Os}-\mathrm{H}$ bond in 1 may be similar to that of the starting dihydride $\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{12}$. Indeed, reaction of 1 with $\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}$ in dichloromethane at room temperature for 1 h yields the addition product 2 as shown.

[^1]Compound $2^{* * *}$ can also be obtained directly by the reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}$ and $\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{12}$ in a $2: 1$ molar ratio. Thus the Os_{9} species, the result of a $3+3+3$ addition, is assembled from two triangular Os_{3} end groups and a linear Os_{3} link. We have also demonstrated that the linking fragment can be varied. Thus $\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}$ reacts with $\mathrm{H}_{2} \mathrm{Os}_{2}(\mathrm{CO})_{8}$ in dichloromethane at room temperature to yield the anticipated $3+2$ addition product, $\mathrm{H}_{2} \mathrm{Os}_{5}(\mathrm{CO})_{18}(\mathrm{Me}-$ $\mathrm{CN})^{\dagger}$ and the $3+2+3$ addition product, $\mathrm{H}_{2} \mathrm{Os}_{8}{ }^{-}$ $(\mathrm{CO})_{28}(\mathrm{MeCN})_{2}{ }^{\dagger+}$. Similarly, $\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}$ reacts with $\mathrm{H}_{2} \mathrm{Os}(\mathrm{CO})_{4}$ to yield the new $3+1+3$ addition product $\mathrm{H}_{2} \mathrm{Os}_{7}(\mathrm{CO})_{24}(\mathrm{MeCN})_{2}{ }^{\dagger \dagger \dagger}$ as well as the known $3+1$ addition product $\mathrm{H}_{2} \mathrm{Os}_{4}(\mathrm{CO})_{14}(\mathrm{MeCN})$ [3].

We have also demonstrated that the end groups can be varied, and have obtained addition porducts with $\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{MeCN})$ as well as with $\mathrm{Ru}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}$. Thus with the ability to change the end groups and the linking groups as well as to isolate the intermediates

[^2]such as compound 1 , this method gives an efficient and versatile way of assembling a wide range of homo- ${ }^{\ddagger}$ and heterometallic clusters from smaller fragments. We are currently' exploring the scope of this reaction as well as investigating the closing-up of the clusters thus obtained, as was observed for the spiked cluster $\mathrm{H}_{2} \mathrm{Os}_{4}(\mathrm{CO})_{14}(\mathrm{MeCN})$ [3].

Acknowledgements

We thank the University of Cape Town and the F.R.D. for support to J.R.M.

References

1 M. D. Vargas and J. N. Nicholls, Adv. in Inorg. Chem. Radiochem., 30 (1986) 123.
2 M. R. Churchill, F. J. Hollander, R. A. Lashewycz, G. A. Pearson and J. R. Shapley, J. Am. Chem. Soc., 103 (1981) 2430.
3 E. J. Ditzel, B. F. G. Johnson, J. Lewis, P. R. Raithby and M. J. Taylor, J. Chem. Soc., Dalton Trans., (1985) 555.
4 J. R. Moss and W. A. G. Graham, Inorg. Chem., 16 (1977) 75.

[^3]
[^0]: Correspondence to: Professor The Lord Lewis.

[^1]: * IR $\nu(\mathrm{CO})\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 2127 \mathrm{w}, 2101 \mathrm{~m}, 2084 \mathrm{w}, 2063 \mathrm{~m}, 2053 \mathrm{~m}$, 2028vs, 2010sh, $1957 \mathrm{wbr} \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 2.56$ (MeCN), $\delta-9.85$ (terminal $\mathrm{Os}-\mathrm{H}$), $\delta \mathbf{- 1 6 . 7 4}$ (bridging Os-H). The mass spectrum shows a parent ion at $m / e 1801$ in agreement with the formulation $\mathrm{H}_{2} \mathrm{Os}_{6}(\mathrm{CO})_{22}(\mathrm{MeCN})$.
 ** IR $\nu(\mathrm{CO})\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 2122 \mathrm{w}, 2106 \mathrm{w}, 2061 \mathrm{vs}, 2022 \mathrm{vs} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 2.52(\mathrm{MeCN}) \delta-16.83$ (bridging $\mathrm{Os}-\mathrm{H}$). The mass spectrum shows a parent ion at $m / e 1835$.

[^2]: *** IR $\nu(\mathrm{CO})\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 2101 \mathrm{~m}, 2092 \mathrm{sh}, 2060 \mathrm{~s}, 2025 \mathrm{sh}, 2015 \mathrm{vsbr}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 2.58(\mathrm{MeCN}), \delta \mathbf{1 6 . 6 2}$ (bridging Os-H). + ve FAB mass spectrum showed a parent ion at $m / e 2693$ in agreement with the formulation $\mathrm{H}_{2} \mathrm{Os}_{9}(\mathrm{CO})_{32}(\mathrm{MeCN})_{2}$.
 1 IR $\nu(\mathrm{CO})\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 2123 \mathrm{w}, 2095 \mathrm{~m}, 2071 \mathrm{sh}, 2060 \mathrm{~s}, 2026$ vs $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 2.53(\mathrm{MeCN}), \delta-9.96$ (terminal $\mathrm{Os}-\mathrm{H}$), $\delta-16.76$ (bridging $\mathrm{Os}-\mathrm{H}$). The mass spectrum shows a parent ion at $m / e 1499$.
 ${ }^{\dagger+} \mathrm{IR} \nu(\mathrm{CO})\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 2117 \mathrm{w}, 2098 \mathrm{~m}, 2085 \mathrm{~m}, 2064 \mathrm{~s}, 2050 \mathrm{~m}$, $2025 \mathrm{~s}, 2012 \mathrm{sh}, 2007 \mathrm{vs} \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 2.57$ (MeCN), $\delta-16.62$ (bridging Os-H). The mass spectrum shows a parent ion at $m / e 2390$.
 ${ }^{\dagger \dagger \dagger}$ IR $\nu(\mathrm{CO})\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 2093 \mathrm{~m}, 2076 \mathrm{~m}, 2059 \mathrm{~s}, 2025 \mathrm{vs}, 2006 \mathrm{sbr}$, $1984 \mathrm{mbr} \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 2.56(\mathrm{MeCN}), \delta-16.59$ (bridging Os-H). The mass spectrum shows a parent ion at $m / e 2088$.

[^3]: \mp Just using the end group $\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}$ and the link groups $\mathrm{H}_{2}\left[\mathrm{Os}(\mathrm{CO})_{4}\right]_{n}(n=1,2$ or 3$)$ it is possible to assemble all nuclearities from 4 to 9 by at least one route: i.e. $3+1,3+2,3+3$, $3+1+3,3+2+3,3+3+3$.

